论文标题
抑制由CETIGE $ \ _ 3 $的关键晶格参数抑制的静水压力或V替代
Suppression of ferromagnetism governed by a critical lattice parameter in CeTiGe$\_3$ with hydrostatic pressure or V substitution
论文作者
论文摘要
我们结合了结构和磁测量,以比较CETIGE3中的压力和取代研究之间的不同磁相图。我们报告了CETI1-XVXGE3(X = 0,0.1,0.2,0.3,0.4,0.9和1)的单晶的结构,磁和电运输特性,以及多晶样品(X = 0.5、0.6、0.7、0.7、0.8),以及CETIGE 3的结构性属性。 CETIGE3中的铁磁顺序被CETI1-XVXGE3中的V掺杂抑制,并提出可能的铁磁量子临界点附近x = 0.45。我们执行详细的结晶电场(CEF)分析,并且CEF模型可以很好地解释纯CETIGE3和CEVGE3中的磁化率数据。拟议的CEF能级表明,基态从CETIGE3中的5/2状态逐渐变化为CEVGE3中的1/2状态,并且抑制了量子关键区域附近的CEF分裂能量。当使用静水压力代替化学替代时,通过在4.1 GPa左右的磁相的出现来避免量子临界点。在替代研究中,铁磁和抗铁磁区域分离良好,而在压力研究中它们会触及。我们观察到两项研究中电阻率最大的温度依赖性趋势不同,这表明CEF分裂能量被V取代抑制,但压力得到了增强。我们还观察到两项研究之间晶格常数的不同响应,强调了一个事实,即不能仅将替代效应降低到化学压力效应。然而,当比较静水压力和取代的磁相图时,我们发现一个常见的临界晶格常数C = 5.78 A,其中两项研究都抑制了铁磁有序。
We combine structural and magnetic measurements to compare the different magnetic phase diagrams between the pressure and substitution studies in CeTiGe3. We report on the structural, magnetic, and electrical transport properties of single crystals of CeTi1-xVxGe3 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.9, and 1), and of polycrystalline samples (x = 0.5, 0.6, 0.7, 0.8), as well as structural properties of CeTiGe3 under pressure up to 9 GPa. The ferromagnetic ordering in CeTiGe3 is suppressed with V doping in CeTi1-xVxGe3, and suggests a possible ferromagnetic quantum critical point near x = 0.45. We perform a detailed crystalline electric field (CEF) analysis, and the magnetic susceptibility data in pure CeTiGe3 and CeVGe3 can be well explained by the CEF model. The proposed CEF energy levels suggest that there is a gradual change of the ground state from 5/2 state in CeTiGe3 to 1/2 state in CeVGe3, and a suppression of CEF splitting energies near the quantum critical region. When hydrostatic pressure is used instead of chemical substitution, the quantum critical point is avoided by the appearance of magnetic phases above around 4.1 GPa. In the substitution study, the ferromagnetic and antiferromagnetic regions are well separated, whereas they touch in the pressure study. We observe a different trend in the temperature dependence of the resistivity maximum in both studies, suggesting that the CEF splitting energy is suppressed by V substitution but enhanced by pressure. We also observe different responses in lattice constants between the two studies, highlighting the fact that substitution effects cannot be reduced to chemical pressure effects only. Nevertheless, when the magnetic phase diagrams of both hydrostatic pressure and substitution are compared, we find a common critical lattice constant c = 5.78 A where the ferromagnetic ordering is suppressed in both studies.