论文标题

在嵌入式纳什问题上

On the embedded Nash problem

论文作者

Budur, Nero, de la Bodega, Javier, Poza, Eduardo de Lorenzo, de Bobadilla, Javier Fernández, Pełka, Tomasz

论文摘要

在平滑的代数品种中超出表面的嵌入式NASH问题是,沿着高表情,具有固定接触端的弧形的最大不可减至的弧度表征。我们表明,这对最小模型的除数为此类家庭贡献。我们根据分辨率图解决了非基础平面曲线细菌的问题。这些是关于奇异品种的经典nash问题的已知结果的嵌入类似物。

The embedded Nash problem for a hypersurface in a smooth algebraic variety, is to characterize geometrically the maximal irreducible families of arcs with fixed order of contact along the hypersurface. We show that divisors on minimal models of the pair contribute with such families. We solve the problem for unibranch plane curve germs, in terms of the resolution graph. These are embedded analogs of known results for the classical Nash problem on singular varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源