论文标题

mocapdeform:单眼3D人类运动捕获在可变形场景中

MoCapDeform: Monocular 3D Human Motion Capture in Deformable Scenes

论文作者

Li, Zhi, Shimada, Soshi, Schiele, Bernt, Theobalt, Christian, Golyanik, Vladislav

论文摘要

从单眼RGB图像中捕获的3D人类运动捕获符合受试者与复杂且可能可变形的环境的相互作用的相互作用是一个非常具有挑战性,不足和探索不足的问题。现有方法仅薄弱地解决它,并且当人类与场景表面互动时,通常不会建模可能发生的表面变形。相比之下,本文提出了mocapdeform,即单眼3D人体运动捕获的新框架,该框架是第一个明确模拟3D场景的非rigid变形的框架,以改善3D人体姿势估计和可变形环境的重建。 Mocapdeform接受单眼RGB视频,并在相机空间中对齐一个3D场景。它首先使用基于新的射线广播的策略将输入单眼视频中的主题以及密集的触点标签进行定位。接下来,我们的人类环境相互作用约束被利用以共同优化全局3D人体姿势和非刚性表面变形。 Mocapdeform比在几个数据集上的竞争方法(包括我们新录制的背景场景中的新录制的方法)上实现了更高的精度。

3D human motion capture from monocular RGB images respecting interactions of a subject with complex and possibly deformable environments is a very challenging, ill-posed and under-explored problem. Existing methods address it only weakly and do not model possible surface deformations often occurring when humans interact with scene surfaces. In contrast, this paper proposes MoCapDeform, i.e., a new framework for monocular 3D human motion capture that is the first to explicitly model non-rigid deformations of a 3D scene for improved 3D human pose estimation and deformable environment reconstruction. MoCapDeform accepts a monocular RGB video and a 3D scene mesh aligned in the camera space. It first localises a subject in the input monocular video along with dense contact labels using a new raycasting based strategy. Next, our human-environment interaction constraints are leveraged to jointly optimise global 3D human poses and non-rigid surface deformations. MoCapDeform achieves superior accuracy than competing methods on several datasets, including our newly recorded one with deforming background scenes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源