论文标题

使用3D几何一致性,腹腔镜图像中的自我监督深度估计

Self-Supervised Depth Estimation in Laparoscopic Image using 3D Geometric Consistency

论文作者

Huang, Baoru, Zheng, Jian-Qing, Nguyen, Anh, Xu, Chi, Gkouzionis, Ioannis, Vyas, Kunal, Tuch, David, Giannarou, Stamatia, Elson, Daniel S.

论文摘要

深度估计是图像引导在机器人手术和腹腔镜成像系统中进行干预的关键步骤。由于对于腹腔镜图像数据很难获得人均深度地面真相,因此很少将监督的深度估计应用于手术应用。作为替代方法,已经引入了仅使用同步的立体图像对来训练深度估计器。但是,最近的工作重点是2D中的左右一致性,而忽略了现实世界坐标中对象的宝贵固有3D信息,这意味着左右3D几何结构一致性尚未完全利用。为了克服这一限制,我们提出了M3Depth,这是一种自我监督的深度估算器,以利用3D几何结构信息隐藏在立体声对中,同时保持单眼推理。该方法还消除了在至少一个立体声图像中通过遮罩看不见的边界区域的影响,以增强重叠区域中左图和右图像之间的对应关系。密集实验表明,我们的方法在公共数据集和新获取的数据集上的以前的自我监督方法都大大差距,这表明对不同的样本和腹腔镜进行了良好的概括。代码和数据可在https://github.com/br0202/m3depth上找到。

Depth estimation is a crucial step for image-guided intervention in robotic surgery and laparoscopic imaging system. Since per-pixel depth ground truth is difficult to acquire for laparoscopic image data, it is rarely possible to apply supervised depth estimation to surgical applications. As an alternative, self-supervised methods have been introduced to train depth estimators using only synchronized stereo image pairs. However, most recent work focused on the left-right consistency in 2D and ignored valuable inherent 3D information on the object in real world coordinates, meaning that the left-right 3D geometric structural consistency is not fully utilized. To overcome this limitation, we present M3Depth, a self-supervised depth estimator to leverage 3D geometric structural information hidden in stereo pairs while keeping monocular inference. The method also removes the influence of border regions unseen in at least one of the stereo images via masking, to enhance the correspondences between left and right images in overlapping areas. Intensive experiments show that our method outperforms previous self-supervised approaches on both a public dataset and a newly acquired dataset by a large margin, indicating a good generalization across different samples and laparoscopes. Code and data are available at https://github.com/br0202/M3Depth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源