论文标题

关于静液压欧拉方程的能量节约:Onsager猜想

On Energy Conservation for the Hydrostatic Euler Equations: An Onsager Conjecture

论文作者

Boutros, Daniel W., Markfelder, Simon, Titi, Edriss S.

论文摘要

近年来,Onsager的猜想将能量的保护与欧拉方程较弱的解决方案的规律性有关,近年来已经完全解决。在这项工作中,我们在静液压Euler方程(也称为海洋和大气动力学的无粘性原始方程)的背景下,追求Onsager的猜想的类似物。在这种情况下,相关的保守量是水平动能。 我们首先考虑文献中通常使用的弱解决方案的标准概念。我们表明,如果水平速度$(u,v)$足够规律,则可以保留水平动能。有趣的是,在液压效能方程中足以节能的空间Hölder规律指数为$ \ frac {1} {2} $,因此大于欧拉方程的相应规则性指数($ \ frac {1} {3} {3} $)。 这是由于速度场的各向异性规律性:与液压欧拉方程相比,垂直速度$ W $相对于水平变量,与水平速度$(u,v)$相比,垂直速度$ w $在空间上的规律性较小。由于弱解决方案的标准概念无法正确处理这种各向异性,因此我们介绍了两个新的弱解决方案概念,非线性的垂直部分被解释为副群。最终,我们证明了这种弱解决方案以节省能源的几个足够条件。

Onsager's conjecture, which relates the conservation of energy to the regularity of weak solutions of the Euler equations, was completely resolved in recent years. In this work, we pursue an analogue of Onsager's conjecture in the context of the hydrostatic Euler equations (also known as the inviscid primitive equations of oceanic and atmospheric dynamics). In this case the relevant conserved quantity is the horizontal kinetic energy. We first consider the standard notion of weak solution which is commonly used in the literature. We show that if the horizontal velocity $(u,v)$ is sufficiently regular then the horizontal kinetic energy is conserved. Interestingly, the spatial Hölder regularity exponent which is sufficient for energy conservation in the context of the hydrostatic Euler equations is $\frac{1}{2}$ and hence larger than the corresponding regularity exponent for the Euler equations (which is $\frac{1}{3}$). This is due to the anisotropic regularity of the velocity field: Unlike the Euler equations, in the case of the hydrostatic Euler equations the vertical velocity $w$ is one degree spatially less regular with respect to the horizontal variables, compared to the horizontal velocity $(u,v)$. Since the standard notion of weak solution is not able to deal with this anisotropy properly, we introduce two new notions of weak solutions for which the vertical part of the nonlinearity is interpreted as a paraproduct. We finally prove several sufficient conditions for such weak solutions to conserve energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源