论文标题

通过最大规范和特征功能来测量统计依赖性

Measuring Statistical Dependencies via Maximum Norm and Characteristic Functions

论文作者

Daniušis, Povilas, Juneja, Shubham, Kuzma, Lukas, Marcinkevičius, Virginijus

论文摘要

在本文中,我们专注于使用特征函数的统计依赖估计问题。我们根据关节和界限特征函数之间差异的最大差异提出了统计依赖度量。所提出的度量可以检测两个可能不同维度的随机向量之间的任意统计依赖性,可以区分,并且很容易整合到现代机器学习和深度学习管道中。我们还使用模拟和真实数据进行实验。我们的模拟表明,与此研究渠道中的先前工作相比,提出的方法可以测量高维,非线性数据中的统计依赖性,并且受维度诅咒的影响较小。使用真实数据的实验证明了我们的统计量度对两个不同的经验推理情景的潜在适用性,显示出对监督功能提取和深层神经网络正则化的统计学显着改善。此外,我们还提供了随附的开源存储库https://bit.ly/3d4ch5i的链接。

In this paper, we focus on the problem of statistical dependence estimation using characteristic functions. We propose a statistical dependence measure, based on the maximum-norm of the difference between joint and product-marginal characteristic functions. The proposed measure can detect arbitrary statistical dependence between two random vectors of possibly different dimensions, is differentiable, and easily integrable into modern machine learning and deep learning pipelines. We also conduct experiments both with simulated and real data. Our simulations show, that the proposed method can measure statistical dependencies in high-dimensional, non-linear data, and is less affected by the curse of dimensionality, compared to the previous work in this line of research. The experiments with real data demonstrate the potential applicability of our statistical measure for two different empirical inference scenarios, showing statistically significant improvement in the performance characteristics when applied for supervised feature extraction and deep neural network regularization. In addition, we provide a link to the accompanying open-source repository https://bit.ly/3d4ch5I.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源