论文标题

使用CT扫描图像和预训练的模型诊断Covid-19疾病诊断

Diagnosis of COVID-19 disease using CT scan images and pre-trained models

论文作者

Amouzegar, Faezeh, Mirvaziri, Hamid, Ghazizadeh-Ahsaee, Mostafa, Shariatzadeh, Mahdi

论文摘要

Covid-19的诊断对于预防和控制该疾病是必要的。深度学习方法已被认为是一种快速准确的方法。在本文中,通过三个众所周知的预训练网络的平行组合,我们试图将感染的冠状病毒感染样品与健康样本区分开。负模样损耗函数已用于模型训练。 SARS-COV-2数据集中的CT扫描图像用于诊断。 SARS-COV-2数据集包含2482张肺CT扫描图像,其中1252张图像属于COVID-19感染的样品。所提出的模型接近97%的准确性。

Diagnosis of COVID-19 is necessary to prevent and control the disease. Deep learning methods have been considered a fast and accurate method. In this paper, by the parallel combination of three well-known pre-trained networks, we attempted to distinguish coronavirus-infected samples from healthy samples. The negative log-likelihood loss function has been used for model training. CT scan images in the SARS-CoV-2 dataset were used for diagnosis. The SARS-CoV-2 dataset contains 2482 images of lung CT scans, of which 1252 images belong to COVID-19-infected samples. The proposed model was close to 97% accurate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源