论文标题

通过原位可视化和数据压缩增强动态模式分解工作流程

Enhancing Dynamic Mode Decomposition Workflow with In-Situ Visualization and Data Compression

论文作者

Barros, Gabriel F., Grave, Malú, Camata, José J., Coutinho, Alvaro L. G. A.

论文摘要

科学机器学习的进步改善了现代计算科学和工程应用。数据驱动的方法(例如动态模式分解(DMD))可以从动态系统生成的时空数据中提取相干结构,并推断上述系统的不同情况。时空数据作为快照,每次瞬间包含空间信息。在现代工程应用中,高维快照的产生可能是时间和/或资源需求。在本研究中,我们考虑了在大型数值模拟中增强DMD工作流程的两种策略:(i)快照压缩以减轻磁盘压力; (ii)使用原位可视化图像在运行时重建动力学(或部分)。我们通过两个3D流体动力学模拟评估我们的方法,并考虑DMD重建解决方案。结果表明,快照压缩大大减少了所需的磁盘空间。我们已经观察到,损耗的压缩将存储降低了几乎$ 50 \%$,而信号重建和其他关注量的相对错误则较低。我们还使用原位可视化工具将分析扩展到了直接生成的数据,以在运行时生成状态向量的图像文件。在大型模拟上,快照的产生可能足够慢,可以使用批处理算法进行推理。流DMD利用增量SVD算法,并随着每个新快照的到来更新模式。我们使用流式DMD来重建原位生成的图像的动力学。我们证明此过程是有效的,并且重建的动力学是准确的。

Modern computational science and engineering applications are being improved by the advances in scientific machine learning. Data-driven methods such as Dynamic Mode Decomposition (DMD) can extract coherent structures from spatio-temporal data generated from dynamical systems and infer different scenarios for said systems. The spatio-temporal data comes as snapshots containing spatial information for each time instant. In modern engineering applications, the generation of high-dimensional snapshots can be time and/or resource-demanding. In the present study, we consider two strategies for enhancing DMD workflow in large numerical simulations: (i) snapshots compression to relieve disk pressure; (ii) the use of in situ visualization images to reconstruct the dynamics (or part of) in runtime. We evaluate our approaches with two 3D fluid dynamics simulations and consider DMD to reconstruct the solutions. Results reveal that snapshot compression considerably reduces the required disk space. We have observed that lossy compression reduces storage by almost $50\%$ with low relative errors in the signal reconstructions and other quantities of interest. We also extend our analysis to data generated on-the-fly, using in-situ visualization tools to generate image files of our state vectors during runtime. On large simulations, the generation of snapshots may be slow enough to use batch algorithms for inference. Streaming DMD takes advantage of the incremental SVD algorithm and updates the modes with the arrival of each new snapshot. We use streaming DMD to reconstruct the dynamics from in-situ generated images. We show that this process is efficient, and the reconstructed dynamics are accurate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源