论文标题

使用随机多项式膨胀的地震脆弱性分析

Seismic fragility analysis using stochastic polynomial chaos expansions

论文作者

Zhu, X., Broccardo, M., Sudret, B.

论文摘要

在基于绩效的地震工程(PBEE)框架内,脆弱模型起着关键作用。这样的模型代表了工程需求参数(EDP)超过一组特征地震负载的选定强度度量(IMS)的概率。脆弱计算的条件方法依赖于完整的非线性历史分析。在该周长中,有两种主要方法:第一个依赖于记录的地面运动的选择和缩放;第二个基于随机振动理论,用参数随机地面运动模型(SGMM)来表征地震输入。后一种情况具有很大的优势,即地震风险分析的问题被构成为正向不确定性量化问题。然而,由于典型有限元模型的高度计算成本,运行经典的全尺寸蒙特卡洛模拟是棘手的。因此,定义将EDP与SGMM参数联系起来的脆性模型是非常有趣的,这些模型在这种情况下被视为IMS。这种脆弱模型的计算本身是一个挑战,尽管最近很少研究,但该领域仍然存在重要的研究差距。这项研究通过使用随机多项式混乱的扩展来应对这一计算挑战,以表示EDP对IMS的统计依赖性。更确切地说,该替代模型估计了IMS条件的EDP的完整条件概率分布。我们将所提出的方法与两种案例研究中的一些最新方法进行了比较。数值结果表明,新方法在估计条件分布和脆弱函数方面占上风。

Within the performance-based earthquake engineering (PBEE) framework, the fragility model plays a pivotal role. Such a model represents the probability that the engineering demand parameter (EDP) exceeds a certain safety threshold given a set of selected intensity measures (IMs) that characterize the earthquake load. The-state-of-the art methods for fragility computation rely on full non-linear time-history analyses. Within this perimeter, there are two main approaches: the first relies on the selection and scaling of recorded ground motions; the second, based on random vibration theory, characterizes the seismic input with a parametric stochastic ground motion model (SGMM). The latter case has the great advantage that the problem of seismic risk analysis is framed as a forward uncertainty quantification problem. However, running classical full-scale Monte Carlo simulations is intractable because of the prohibitive computational cost of typical finite element models. Therefore, it is of great interest to define fragility models that link an EDP of interest with the SGMM parameters -- which are regarded as IMs in this context. The computation of such fragility models is a challenge on its own and, despite few recent studies, there is still an important research gap in this domain. This study tackles this computational challenge by using stochastic polynomial chaos expansions to represent the statistical dependence of EDP on IMs. More precisely, this surrogate model estimates the full conditional probability distribution of EDP conditioned on IMs. We compare the proposed approach with some state-of-the-art methods in two case studies. The numerical results show that the new method prevails its competitors in estimating both the conditional distribution and the fragility functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源