论文标题
通过平行运输和流动性ICP适应人类对机器人的可操作性域的适应
Human-to-Robot Manipulability Domain Adaptation with Parallel Transport and Manifold-Aware ICP
论文作者
论文摘要
操纵性椭圆形有效地捕获人姿势并揭示有关手头任务的信息。他们在任务依赖的机器人教学中的使用,尤其是他们从教师到学习者的转移 - 可以推动模仿人类运动。尽管在最近的文献中,重点转向了两个机器人之间的可操作性转移,但迄今为止,对另一个运动系统的能力的适应性尚未解决,并且从人类到机器人的转移研究仍处于起步阶段。这项工作提出了一种新型的可操作性域适应方法,用于将可操作性信息传输到另一个运动系统的域。由于可操作性矩阵/椭圆形是对称的阳性定义(SPD),因此可以将它们视为SPD矩阵的Riemannian歧管上的点。我们是第一个从点云注册的角度解决可操作性转移问题的问题。我们提出了一种具有平行传输初始化的歧管感知的迭代最接近点算法(ICP)。此外,我们基于固有的几何特征引入了与可操作性椭圆形相匹配的对应关系。我们确认了使用二-DOF操纵器以及代表人臂运动学的7-DOF模型的模拟实验方法。
Manipulability ellipsoids efficiently capture the human pose and reveal information about the task at hand. Their use in task-dependent robot teaching - particularly their transfer from a teacher to a learner - can advance emulation of human-like motion. Although in recent literature focus is shifted towards manipulability transfer between two robots, the adaptation to the capabilities of the other kinematic system is to date not addressed and research in transfer from human to robot is still in its infancy. This work presents a novel manipulability domain adaptation method for the transfer of manipulability information to the domain of another kinematic system. As manipulability matrices/ellipsoids are symmetric positive-definite (SPD) they can be viewed as points on the Riemannian manifold of SPD matrices. We are the first to address the problem of manipulability transfer from the perspective of point cloud registration. We propose a manifold-aware Iterative Closest Point algorithm (ICP) with parallel transport initialization. Furthermore, we introduce a correspondence matching heuristic for manipulability ellipsoids based on inherent geometric features. We confirm our method in simulation experiments with 2-DoF manipulators as well as 7-DoF models representing the human-arm kinematics.