论文标题

通过对比度学习对象发现弱监督对象检测

Object Discovery via Contrastive Learning for Weakly Supervised Object Detection

论文作者

Seo, Jinhwan, Bae, Wonho, Sutherland, Danica J., Noh, Junhyug, Kim, Daijin

论文摘要

弱监督的对象检测(WSOD)是一项任务,使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种称为对象发现的新颖的多个实例标记方法。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督的对比损失(WSCL)。 WSCL的目的是通过利用一致的特征来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。

Weakly Supervised Object Detection (WSOD) is a task that detects objects in an image using a model trained only on image-level annotations. Current state-of-the-art models benefit from self-supervised instance-level supervision, but since weak supervision does not include count or location information, the most common ``argmax'' labeling method often ignores many instances of objects. To alleviate this issue, we propose a novel multiple instance labeling method called object discovery. We further introduce a new contrastive loss under weak supervision where no instance-level information is available for sampling, called weakly supervised contrastive loss (WSCL). WSCL aims to construct a credible similarity threshold for object discovery by leveraging consistent features for embedding vectors in the same class. As a result, we achieve new state-of-the-art results on MS-COCO 2014 and 2017 as well as PASCAL VOC 2012, and competitive results on PASCAL VOC 2007.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源