论文标题

与polydisc相关的商域的功能理论

Function theory on quotient domains related to the polydisc

论文作者

Bhowmik, Mainak, Kumar, Poornendu

论文摘要

内部函数是全态函数理论的骨干。本文研究了由有限伪反射组的组动作引起的开放单位polydisc的商域的内部功能。已知这种商域是$ \ bd^d $的适当图像$θ(\ bd^d)$ bd^d $下的biholomormormorphic,在某些多项式映射$θ:\ bd^d \toθ(\ bd^d)下。本文的主要贡献如下: 1)我们表明,内部函数在$θ(\ bd^d)上生成的封闭代数$形成了$ h^\ infty(θ(\ bd^d))$的适当subergebra,$θ(\ bd^d)$的有限全态函数的代数。 2)$θ(\ bd^d)$上的所有理性内部函数的集合在$ h^\ infty(θ(\ bd^d))$的标准单位球中表现出密度,相对于统一的紧凑型拓扑,从而证明了Carathéodory近似结果。 3)作为carathéodory近似理论的应用,我们近似圆形函数在$θ(\ bd^d)$上的函数连续关闭,它们通过$ {θ(\ bd^d)} $连续,通过convex在$ l^2 $ -Norm中的合理内部功能的组合,从而获得fisher的版本,从而获得$ l^2 $ -NORM中的理性内部功能。 4)鉴于上面的两个近似结果,建立一个理性内部函数的结构至关重要。我们已经确定了$θ(\ mathbb {d}^d)$上的理性内部功能的结构。 5)还讨论了运算符值功能的Carathéodory近似。

Inner functions are the backbone of holomorphic function theory. This paper studies the inner functions on quotient domains of the open unit polydisc, $\bD^d$, arising from the group action of finite pseudo-reflection groups. Such quotient domains are known to be biholomorphic to the proper image $θ(\bD^d)$ of $\bD^d$ under certain polynomial maps $θ: \bD^d \to θ(\bD^d)$. The main contributions of this paper are as follows: 1) We show that the closed algebra generated by inner functions on $θ(\bD^d)$ forms a proper subalgebra of $H^\infty(θ(\bD^d))$, the algebra of bounded holomorphic functions on $θ(\bD^d)$. 2) The set of all rational inner functions on $θ(\bD^d)$ is shown to be dense in the norm-unit ball of $H^\infty(θ(\bD^d))$ with respect to the uniform compact-open topology, thereby proving the Carathéodory approximation result. 3) As an application of the Carathéodory approximation theorem, we approximate holomorphic functions on $θ(\bD^d)$ that are continuous in the closure of ${θ(\bD^d)}$ by convex combinations of rational inner functions in the $L^2 $-norm, thereby obtaining a version of the Fisher's theorem. 4) Given the two approximation results above, establishing a structure for rational inner functions is essential. We have identified the structure of rational inner functions on $θ(\mathbb{D}^d)$. 5) The Carathéodory approximation for operator-valued functions is also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源