论文标题

部分微分方程某些系统的功能耗散性

The functional dissipativity of certain systems of partial differential equations

论文作者

Cialdea, Alberto, Maz'ya, Vladimir

论文摘要

在本文中,我们考虑了dirichlet问题的功能耗散性,用于$ \ partial_ {h}的部分差分操作员的系统({\ Mathop {\ Mathop {\ mathscr a} \ nolimits} \ nolimits}^{hk} {hk} { a} \ nolimits}^{hk} $为$ m \ times m $矩阵,具有复杂的$ l^{1} _ {\ text {loc}} $ entries)。在操作员的特殊情况下,$ \ partial_ {h}({\ Mathop {\ MathScr a} \ nolimits} \ nolimits}^{h}^{h}(x)\ partial_ {h})$(其中$ {\ m athop {\ sathscr {\ mathscr a} \ nolimits a} \ nolimits}必要和充分的条件。我们还给出了三种不同的功能椭圆度概念,并研究了它们之间的关系以及有关操作员的功能耗散性。

In the present paper we consider the functional dissipativity of the Dirichlet problem for systems of partial differential operators of the form $\partial_{h} ({\mathop{\mathscr A}\nolimits}^{hk}(x)\partial_{k})$ (${\mathop{\mathscr A}\nolimits}^{hk}$ being $m\times m$ matrices with complex valued $L^{1}_{\text{loc}}$ entries). In the particular case of the operator $\partial_{h} ({\mathop{\mathscr A}\nolimits}^{h}(x)\partial_{h})$ (where ${\mathop{\mathscr A}\nolimits}^{h}$ are $m\times m$ matrices) we obtain algebraic necessary and sufficient conditions. We give also three different notions of functional ellipticity and investigate the relations between them and the functional dissipativity for the operators in question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源