论文标题

分销相关性 - 意识到股票交易量预测的知识蒸馏

Distributional Correlation--Aware Knowledge Distillation for Stock Trading Volume Prediction

论文作者

Li, Lei, Zhang, Zhiyuan, Bao, Ruihan, Harimoto, Keiko, Sun, Xu

论文摘要

分类问题中的传统知识蒸馏会通过教师模型产生的软标签中的类相关性转移知识,而这些软性标签在诸如股票交易量预测之类的回归问题中不可用。为了解决这个问题,我们提出了一个新颖的蒸馏框架,用于训练一个轻巧的学生模型,以执行历史交易数据,以执行交易量预测。具体而言,我们通过训练模型来预测交易量所属的高斯分布,将回归模型变成概率预测模型。因此,学生模型可以通过将其预测的分布与老师的分布相匹配,从而向老师学习。进一步引入了两个相关蒸馏目标,以鼓励学生与教师模型建立一致的配对关系。我们在具有两个不同时间窗口设置的现实世界库存卷数据集上评估了框架。实验表明,我们的框架优于强大的基线模型,在保持$ 99.6 \%$预测准确性的同时,将模型大小压缩为$ 5 \ times $。广泛的分析进一步表明,在低资源场景下,我们的框架比香草蒸馏方法更有效。

Traditional knowledge distillation in classification problems transfers the knowledge via class correlations in the soft label produced by teacher models, which are not available in regression problems like stock trading volume prediction. To remedy this, we present a novel distillation framework for training a light-weight student model to perform trading volume prediction given historical transaction data. Specifically, we turn the regression model into a probabilistic forecasting model, by training models to predict a Gaussian distribution to which the trading volume belongs. The student model can thus learn from the teacher at a more informative distributional level, by matching its predicted distributions to that of the teacher. Two correlational distillation objectives are further introduced to encourage the student to produce consistent pair-wise relationships with the teacher model. We evaluate the framework on a real-world stock volume dataset with two different time window settings. Experiments demonstrate that our framework is superior to strong baseline models, compressing the model size by $5\times$ while maintaining $99.6\%$ prediction accuracy. The extensive analysis further reveals that our framework is more effective than vanilla distillation methods under low-resource scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源