论文标题
通过纯模型掌握核心时间序列
Grasping Core Rules of Time Series through Pure Models
论文作者
论文摘要
时间序列以及许多其他机器学习领域也经历了从统计学到深度学习的过渡。尽管随着模型在许多公开可用的数据集中更新,似乎的准确性似乎已经提高,但通常只会将比例尺增加几倍,以换取准确性的略有差异。通过此实验,我们指出了不同的思维方式,时间序列,尤其是长期预测,可能与其他领域有所不同。不必使用广泛而复杂的模型来掌握时间序列的所有方面,而是使用纯模型来掌握时间序列的核心规则。有了这个简单但有效的想法,我们创建了Purets,这是一个具有三个纯线性层的网络,在80%的长序列预测任务中实现了最新的purets,同时几乎是最轻的模型,并且运行速度最快。在此基础上,我们讨论了纯线性层在现象和本质中的潜力。理解核心定律的能力有助于长距离预测的高精度,并且合理的波动阻止其在多步预测中扭曲曲线,例如主流深度学习模型,该模型总结为避免过度拖延的纯线性神经网络。最后,我们建议轻巧长时间时间序列任务的基本设计标准:输入和输出应尝试具有相同的维度,并且结构避免了碎片化和复杂的操作。
Time series underwent the transition from statistics to deep learning, as did many other machine learning fields. Although it appears that the accuracy has been increasing as the model is updated in a number of publicly available datasets, it typically only increases the scale by several times in exchange for a slight difference in accuracy. Through this experiment, we point out a different line of thinking, time series, especially long-term forecasting, may differ from other fields. It is not necessary to use extensive and complex models to grasp all aspects of time series, but to use pure models to grasp the core rules of time series changes. With this simple but effective idea, we created PureTS, a network with three pure linear layers that achieved state-of-the-art in 80% of the long sequence prediction tasks while being nearly the lightest model and having the fastest running speed. On this basis, we discuss the potential of pure linear layers in both phenomena and essence. The ability to understand the core law contributes to the high precision of long-distance prediction, and reasonable fluctuation prevents it from distorting the curve in multi-step prediction like mainstream deep learning models, which is summarized as a pure linear neural network that avoids over-fluctuating. Finally, we suggest the fundamental design standards for lightweight long-step time series tasks: input and output should try to have the same dimension, and the structure avoids fragmentation and complex operations.