论文标题
在填充的交点上
On the intersection form of fillings
论文作者
论文摘要
通过临时方法,我们证明了具有消失的有理第一切尔特类的精确填充,可灵活地填充的接触歧管具有独特的积分相交形式。我们呼吁接触边界上的特殊REEB动力学(比La lazarev更强),而通过Eliashberg,Ganatra和Lazarev则独立开发了一种更系统的方法。我们还讨论了可以删除消失的理性第一班级假设的案例。我们得出了某些灵活填充的接触歧管和接触嵌入的障碍物的精确填充物的差异类型的独特性,这不一定是精确的。
We prove, by an ad hoc method, that exact fillings with vanishing rational first Chern class of flexibly fillable contact manifolds have unique integral intersection forms. We appeal to the special Reeb dynamics (stronger than ADC à la Lazarev) on the contact boundary, while a more systematic approach working for general ADC manifolds is developed independently by Eliashberg, Ganatra and Lazarev. We also discuss cases where the vanishing rational first Chern class assumption can be removed. We derive the uniqueness of diffeomorphism types of exact fillings of certain flexibly fillable contact manifolds and obstructions to contact embeddings, which are not necessarily exact.