论文标题
在有限的投影家庭下的套件长度
Length of sets under restricted families of projections onto lines
论文作者
论文摘要
令$γ:i \ to s^2 $为$ c^2 $曲线,$ \ det(γ,γ',γ'')$ nonvanishing,对于i $ let $ρ_θ$中的每个$θ\,对于$γ(θ)$的span of promental profaction。结果表明,如果$ a \ subseteq \ mathbb {r}^3 $是一组Hausdorff尺寸的鲍尔,则严格大于1,则$ρ_θ(a)$的长度为A.E。 $θ\ in I $。这回答了Käenmäki,Orponen和Venieri提出的一个问题。
Let $γ: I \to S^2$ be a $C^2$ curve with $\det(γ, γ', γ'')$ nonvanishing, and for each $θ\in I$ let $ρ_θ$ be orthogonal projection onto the span of $γ(θ)$. It is shown that if $A \subseteq \mathbb{R}^3$ is a Borel set of Hausdorff dimension strictly greater than 1, then $ρ_θ(A)$ has positive length for a.e. $θ\in I$. This answers a question raised by Käenmäki, Orponen and Venieri.