论文标题

在推荐系统中忘记快速

Forgetting Fast in Recommender Systems

论文作者

Liu, Wenyan, Wan, Juncheng, Wang, Xiaoling, Zhang, Weinan, Zhang, Dell, Li, Hang

论文摘要

出于隐私或公用事业原因,推荐系统的用户不仅希望从数据存储库中,而且从基础机器学习模型中删除其数据的一部分。可以通过简单地从头开始验证推荐模型来满足这种遗忘的要求,但实际上这太慢且太昂贵了。在本文中,我们研究了推荐系统的快速机器学习技术,这些技术可以从建议模型中删除少量培训数据的效果,而不会产生全部培训模型。加快此过程的一个自然想法是,在其余训练数据上微调当前的推荐模型,而不是从随机初始化开始。这种温暖的启动策略确实适用于使用标准一阶神经网络优化器(如ADAMW)的神经推荐模型。但是,我们发现,通过使用二阶(牛顿或准牛顿)优化方法可以实现更大的加速度。为了克服二阶优化器的过高的计算成本,我们提出了一种新的建议,未经学习方法Alteraser,该方法将未学习的优化问题分为许多可拖延的小问题。在三个现实世界推荐数据集上进行的广泛实验在一致性(忘记彻底),准确性(建议效率)和效率(未学习速度)方面显示了Alteraser的有希望的结果。据我们所知,这项工作代表了最先进的神经推荐模型的第一次尝试快速近似机器的尝试。

Users of a recommender system may want part of their data being deleted, not only from the data repository but also from the underlying machine learning model, for privacy or utility reasons. Such right-to-be-forgotten requests could be fulfilled by simply retraining the recommendation model from scratch, but that would be too slow and too expensive in practice. In this paper, we investigate fast machine unlearning techniques for recommender systems that can remove the effect of a small amount of training data from the recommendation model without incurring the full cost of retraining. A natural idea to speed this process up is to fine-tune the current recommendation model on the remaining training data instead of starting from a random initialization. This warm-start strategy indeed works for neural recommendation models using standard 1st-order neural network optimizers (like AdamW). However, we have found that even greater acceleration could be achieved by employing 2nd-order (Newton or quasi-Newton) optimization methods instead. To overcome the prohibitively high computational cost of 2nd-order optimizers, we propose a new recommendation unlearning approach AltEraser which divides the optimization problem of unlearning into many small tractable sub-problems. Extensive experiments on three real-world recommendation datasets show promising results of AltEraser in terms of consistency (forgetting thoroughness), accuracy (recommendation effectiveness), and efficiency (unlearning speed). To our knowledge, this work represents the first attempt at fast approximate machine unlearning for state-of-the-art neural recommendation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源