论文标题
处女座:宇宙减震波的无监督分类
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
论文作者
论文摘要
宇宙学冲击波对于理解宇宙结构的形成至关重要。为了研究它们,科学家运行计算昂贵的高分辨率3D流体动力模拟。解释仿真结果是具有挑战性的,因为所得的数据集很大程度上是巨大的,并且由于其复杂的形态和多个冲击前线相交,因此很难分离冲击波表面。我们介绍了一条新型的管道,处女座,结合了身体动机,可伸缩性和概率的鲁棒性,以解决这个无关紧要的分类问题。为此,我们使用低级别矩阵近似值的内核主成分分析来代诺,并创建标记的子集。我们执行监督分类,以随机变分深内核学习恢复完整的数据分辨率。我们对具有不同复杂性的三个最先进数据集进行评估,并取得良好的结果。所提出的管道自动运行,只有几个超参数,并且在所有测试的数据集上表现良好。我们的结果对于大规模应用是有希望的,我们重点介绍了现在的科学工作。
Cosmological shock waves are essential to understanding the formation of cosmological structures. To study them, scientists run computationally expensive high-resolution 3D hydrodynamic simulations. Interpreting the simulation results is challenging because the resulting data sets are enormous, and the shock wave surfaces are hard to separate and classify due to their complex morphologies and multiple shock fronts intersecting. We introduce a novel pipeline, Virgo, combining physical motivation, scalability, and probabilistic robustness to tackle this unsolved unsupervised classification problem. To this end, we employ kernel principal component analysis with low-rank matrix approximations to denoise data sets of shocked particles and create labeled subsets. We perform supervised classification to recover full data resolution with stochastic variational deep kernel learning. We evaluate on three state-of-the-art data sets with varying complexity and achieve good results. The proposed pipeline runs automatically, has only a few hyperparameters, and performs well on all tested data sets. Our results are promising for large-scale applications, and we highlight now enabled future scientific work.