论文标题
以节点相似性增强图对比度学习
Enhancing Graph Contrastive Learning with Node Similarity
论文作者
论文摘要
图神经网络(GNN)在学习图表表示方面取得了巨大成功,从而促进了各种与图形相关的任务。但是,大多数GNN方法都采用监督的学习设置,由于难以获得标记的数据,因此在现实世界中并不总是可行的。因此,图表自学学习一直在吸引越来越多的关注。图对比度学习(GCL)是自我监督学习的代表性框架。通常,GCL通过将语义上相似的节点(阳性样本)和不同的节点(阴性样品)与锚节点进行对比来学习节点表示。没有访问标签,通常通过数据增强产生了阳性样品,并且负样品是从整个图中均匀采样的,这导致了亚最佳目标。具体而言,数据增强自然会限制涉及该过程的正样本的数量(通常只采用一个阳性样本)。另一方面,随机采样过程不可避免地选择假阴性样本(样品与锚共享相同的语义)。这些问题限制了GCL的学习能力。在这项工作中,我们提出了一个增强的目标,以解决上述问题。我们首先引入了一个不可能实现的理想目标,该目标包含所有正样本,没有假阴性样本。然后,基于对阳性和负样本进行采样的分布,将这个理想的目标转化为概率形式。然后,我们以节点相似性对这些分布进行建模,并得出增强的目标。各种数据集上的全面实验证明了在不同设置下提出的增强目标的有效性。
Graph Neural Networks (GNNs) have achieved great success in learning graph representations and thus facilitating various graph-related tasks. However, most GNN methods adopt a supervised learning setting, which is not always feasible in real-world applications due to the difficulty to obtain labeled data. Hence, graph self-supervised learning has been attracting increasing attention. Graph contrastive learning (GCL) is a representative framework for self-supervised learning. In general, GCL learns node representations by contrasting semantically similar nodes (positive samples) and dissimilar nodes (negative samples) with anchor nodes. Without access to labels, positive samples are typically generated by data augmentation, and negative samples are uniformly sampled from the entire graph, which leads to a sub-optimal objective. Specifically, data augmentation naturally limits the number of positive samples that involve in the process (typically only one positive sample is adopted). On the other hand, the random sampling process would inevitably select false-negative samples (samples sharing the same semantics with the anchor). These issues limit the learning capability of GCL. In this work, we propose an enhanced objective that addresses the aforementioned issues. We first introduce an unachievable ideal objective that contains all positive samples and no false-negative samples. This ideal objective is then transformed into a probabilistic form based on the distributions for sampling positive and negative samples. We then model these distributions with node similarity and derive the enhanced objective. Comprehensive experiments on various datasets demonstrate the effectiveness of the proposed enhanced objective under different settings.