论文标题

自动转换公理向操作模型:理论和实践

Automated Conversion of Axiomatic to Operational Models: Theory and Practice

论文作者

Godbole, Adwait, Manerkar, Yatin A., Seshia, Sanjit A.

论文摘要

系统可以建模为运行模型(该模型具有明确的状态和状态之间的过渡概念)或公理模型(完全指定为一组不变式)。大多数形式的方法技术(例如IC3,不变合成等)都是为操作模型而设计的,并且在很大程度上无法访问公理模型。此外,不存在自动将公理模型转换为操作模型的先验方法,因此必须手动创建和证明与公理模型的操作等效物相同。 在本文中,我们推进了公理至操作模型转换中最新的。我们表明,$μ$规格的公理建模框架中的一般公理不能翻译成同等的有限状态操作模型。我们还得出了对$μ$ SPEC公理空间的限制,该公理可以为它们提供可行的同等有限状态操作模型。至于实际结果,我们开发了一种将$ $ $ $ SPEC AXIOMS​​自动转换为基于有限态自动机的操作模型的方法。我们通过使用程序生成的模型来证明在三种RTL设计上订购属性的正确性,从而证明了我们方法的功效。

A system may be modelled as an operational model (which has explicit notions of state and transitions between states) or an axiomatic model (which is specified entirely as a set of invariants). Most formal methods techniques (e.g., IC3, invariant synthesis, etc) are designed for operational models and are largely inaccessible to axiomatic models. Furthermore, no prior method exists to automatically convert axiomatic models to operational ones, so operational equivalents to axiomatic models had to be manually created and proven equivalent. In this paper, we advance the state-of-the-art in axiomatic to operational model conversion. We show that general axioms in the $μ$spec axiomatic modelling framework cannot be translated to equivalent finite-state operational models. We also derive restrictions on the space of $μ$spec axioms that enable the feasible generation of equivalent finite-state operational models for them. As for practical results, we develop a methodology for automatically translating $μ$spec axioms to equivalent finite-state automata-based operational models. We demonstrate the efficacy of our method by using the models generated by our procedure to prove the correctness of ordering properties on three RTL designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源