论文标题

在稀疏数据上建模网络级的流量流过渡

Modeling Network-level Traffic Flow Transitions on Sparse Data

论文作者

Lei, Xiaoliang, Mei, Hao, Shi, Bin, Wei, Hua

论文摘要

建模网络级别的交通流量如何在城市环境中变化对于运输,公共安全和城市规划中的决策有用。交通流量系统可以视为随着时间的时间之间(例如,每个道路段的交通量)之间过渡的动态过程。在具有交通操作操作(例如流量信号控制或可逆车道更改)的真实流量系统中,该系统的状态受历史状态和交通操作的动作的影响。在本文中,我们考虑了在现实世界中建模网络级交通流量的问题,在现实世界中,可用数据稀疏(即仅观察到交通系统的一部分)。我们提出了Dtignn,该方法可以预测稀疏数据的网络级流量流。 Dtignn将交通系统建模为受交通信号影响的动态图,学习以运输基本过渡方程为基础的过渡模型,并预测未来在此过程中归咎于未来的交通状态。通过全面的实验,我们证明了我们的方法优于最先进的方法,并且可以更好地支持运输决策。

Modeling how network-level traffic flow changes in the urban environment is useful for decision-making in transportation, public safety and urban planning. The traffic flow system can be viewed as a dynamic process that transits between states (e.g., traffic volumes on each road segment) over time. In the real-world traffic system with traffic operation actions like traffic signal control or reversible lane changing, the system's state is influenced by both the historical states and the actions of traffic operations. In this paper, we consider the problem of modeling network-level traffic flow under a real-world setting, where the available data is sparse (i.e., only part of the traffic system is observed). We present DTIGNN, an approach that can predict network-level traffic flows from sparse data. DTIGNN models the traffic system as a dynamic graph influenced by traffic signals, learns the transition models grounded by fundamental transition equations from transportation, and predicts future traffic states with imputation in the process. Through comprehensive experiments, we demonstrate that our method outperforms state-of-the-art methods and can better support decision-making in transportation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源