论文标题

逼真的量子光子神经网络

Realistic quantum photonic neural networks

论文作者

Ewaniuk, Jacob, Carolan, Jacques, Shastri, Bhavin J., Rotenberg, Nir

论文摘要

量子光子神经网络是变异光子电路,可以训练以实施高保真量子操作。但是,工作到日期已经假定了理想化的组件,包括完美的$π$ kerr非线性。在这里,我们研究了造成光子丢失和不完美路由以及弱非线性的逼真的量子光子神经网络的局限性,表明他们可以学会克服大多数这些错误。以钟形状态分析仪的示例,我们证明存在一个最佳网络大小,该网络大小与缺陷的能力保持平衡,以弥补缺乏非线性的能力。凭借次优$π/10 $有效的Kerr非线性,我们表明,使用当前最新过程制造的网络可以实现0.891的无条件忠诚度,如果可以在每个逻辑光子Qubit中检测到光子的预测成功,则可以增加到0.999999。我们的结果为新兴量子技术的可行,受脑启发的量子光子设备的构建提供了指南。

Quantum photonic neural networks are variational photonic circuits that can be trained to implement high-fidelity quantum operations. However, work-to-date has assumed idealized components, including a perfect $π$ Kerr nonlinearity. Here, we investigate the limitations of realistic quantum photonic neural networks that suffer from fabrication imperfections leading to photon loss and imperfect routing, and weak nonlinearities, showing that they can learn to overcome most of these errors. Using the example of a Bell-state analyzer, we demonstrate that there is an optimal network size, which balances imperfections versus the ability to compensate for lacking nonlinearities. With a sub-optimal $π/10$ effective Kerr nonlinearity, we show that a network fabricated with current state-of-the-art processes can achieve an unconditional fidelity of 0.891, that increases to 0.999999 if it is possible to precondition success on the detection of a photon in each logical photonic qubit. Our results provide a guide to the construction of viable, brain-inspired quantum photonic devices for emerging quantum technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源