论文标题

在与部分权力序列相关的正交laurent多项式上

On orthogonal Laurent polynomials related to the partial sums of power series

论文作者

Zagorodnyuk, Sergey M.

论文摘要

令$ f(z)= \ sum_ {k = 0}^\ infty d_k z^k $,$ d_k \ in \ mathbb {c} \ backslash \ {0 \} $,$ d_0 = 1 $,成为具有非零radius convergence $ covergence $ p $ρ$ρ$:$ 0 <$:$ 0 <<peq \ peq +peq +pec \ pe fe。用$ f_n(z)$表示$ f $的n-th-thth部分总和,$ r_ {2n}(z)= \ frac {f_ {f_ {2n}(z)} {z^n} $,$ r_ {2n+1}(z)(z)(z)= \ frac = \ frac {f _ {f_ {f_ {2n+1}} $ n = 0,1,2,... $。由于亨德里克森(Hendriksen)和范·罗苏姆(Van Rossum)的结果,在laurent polyenmials上存在线性函数$ \ mathbf {l} $,因此$ \ mathbf {l}(r_n r_m)= 0 $,当$ n \ not = m $时,而$ \ \ \ \ \ \ \ \ \ m m ive v {l_n^2)(r_n^2)我们在部分总和的上述情况下为$ \ mathbf {l} $提出了一个明确的积分表示形式。我们使用生成函数理论中的方法。也研究了这种lurent多项式的有限系统。

Let $f(z) = \sum_{k=0}^\infty d_k z^k$, $d_k\in\mathbb{C}\backslash\{ 0 \}$, $d_0=1$, be a power series with a non-zero radius of convergence $ρ$: $0 <ρ\leq +\infty$. Denote by $f_n(z)$ the n-th partial sum of $f$, and $R_{2n}(z) = \frac{ f_{2n}(z) }{ z^n }$, $R_{2n+1}(z) = \frac{ f_{2n+1}(z) }{ z^{n+1} }$, $n=0,1,2,...$. By the result of Hendriksen and Van Rossum there exists a linear functional $\mathbf{L}$ on Laurent polynomials, such that $\mathbf{L}(R_n R_m) = 0$, when $n\not= m$, while $\mathbf{L}(R_n^2)\not= 0$. We present an explicit integral representation for $\mathbf{L}$ in the above case of the partial sums. We use methods from the theory of generating functions. The case of finite systems of such Laurent polynomials is studied as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源