论文标题

观测研究中的概率变异因果方法

Probabilistic Variational Causal Approach in Observational Studies

论文作者

Faghihi, Usef, Saki, Amir

论文摘要

在本文中,我们介绍了一种新的因果方法,该方法基于观察性研究的稀有性和频率,这些因果关系基于它们与基本问题的相关性。具体而言,我们提出了一个直接因果效应度量标准,称为概率变异因果效应(PACE)及其粘附于适用于非二元和二进制治疗的某些假设的变异。速度度量是通过整合总变异的概念来得出的,代表纯粹的因果成分,以及治疗价值的干预措施,以及治疗水平之间假设过渡的概率。 PACE具有参数$ d $,其中较低的$ d $值对应于强调稀有治疗值的方案,而$ d $的较高值则集中在更频繁治疗水平的因果影响更为相关的情况下。因此,我们提供了$ d $的因果效应函数,而不是单个因果效应值。此外,随着暴露价值的变化,我们引入了正和负速度,以测量结果的正面和负因果变化。我们还考虑了标准版的速度版本,称为平均步伐。此外,我们为PACE提供了一个可识别性标准,以应对观察性研究中的反事实挑战,并定义了方法论的几种概括。最后,我们通过分析各种示例将我们的框架与其他著名的因果框架进行了比较。

In this paper, we introduce a new causal methodology that accounts for the rarity and frequency of events in observational studies based on their relevance to the underlying problem. Specifically, we propose a direct causal effect metric called the Probabilistic vAriational Causal Effect (PACE) and its variations adhering to certain postulates applicable to both non-binary and binary treatments. The PACE metric is derived by integrating the concept of total variation, representing the purely causal component, with interventions on the treatment value, combined with the probabilities of hypothetical transitioning between treatment levels. PACE features a parameter $d$, where lower values of $d$ correspond to scenarios emphasizing rare treatment values, while higher values of $d$ focus on situations where the causal impact of more frequent treatment levels is more relevant. Thus, instead of a single causal effect value, we provide a causal effect function of the degree $d$. Additionally, we introduce positive and negative PACE to measure the respective positive and negative causal changes in the outcome as exposure values shift. We also consider normalized versions of PACE, referred to MEAN PACE. Furthermore, we provide an identifiability criterion for PACE to handle counterfactual challenges in observational studies, and we define several generalizations of our methodology. Lastly, we compare our framework with other well-known causal frameworks through the analysis of various examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源