论文标题
神经网络的高斯过程替代模型
Gaussian Process Surrogate Models for Neural Networks
论文作者
论文摘要
无法理解和预测深度学习系统的行为,因此很难确定用于给定问题的结构和算法。在科学和工程学中,建模是一种用于了解内部过程不透明的复杂系统的方法。建模用更简单,更容易解释的替代替代复杂的系统。从中汲取灵感,我们使用高斯流程为神经网络构建了一类代理模型。我们不是从无限神经网络中得出内核,而是从有限神经网络的自然主义行为中学习内核。我们证明我们的方法捕获了与神经网络的光谱偏差相关的现有现象,然后证明我们的替代模型可用于解决实际问题,例如确定哪些点最大的观点影响了特定神经网络的行为,并预测哪些体系结构和算法将在特定数据集中概述。
Not being able to understand and predict the behavior of deep learning systems makes it hard to decide what architecture and algorithm to use for a given problem. In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque. Modeling replaces a complex system with a simpler, more interpretable surrogate. Drawing inspiration from this, we construct a class of surrogate models for neural networks using Gaussian processes. Rather than deriving kernels for infinite neural networks, we learn kernels empirically from the naturalistic behavior of finite neural networks. We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems such as identifying which points most influence the behavior of specific neural networks and predicting which architectures and algorithms will generalize well for specific datasets.