论文标题
运动性不存在诱导相位分离过渡在一个维度
Nonexistence of motility induced phase separation transition in one dimension
论文作者
论文摘要
我们介绍和研究一个模型的硬核颗粒模型,在一维晶格上服从跑步动态动态,其中颗粒以 + +ve或-ve $ x $ - 方向运行,具有有效的速度$ v $并跌倒$ $(更改其动作方向)(以恒定的速率$ω)。我们表明,我们表明该系统可以绘制出一个模型,以绘制一个模型,以绘制一个模型 - 逐渐模型 - 逐渐绘制的模型 - 逐渐绘制的模型,和空位作为珠子,跳到位于与电流相对方向的附近的urn。与电流的大小相同的啤酒花速率取决于出发和到达urn中存在的珠子的总数;我们通过分析进行计算,并表明它不满足相分离过渡所需的标准。翻滚通常不利于干扰的稳定性。因此,我们对该受限的翻滚模型的结果强烈表明,运动能引起的相分离转变不能在一个维度中发生。
We introduce and study a model of hardcore particles obeying run-and-tumble dynamics on a one-dimensional lattice, where particles run in either +ve or -ve $x$-direction with an effective speed $v$ and tumble (change their direction of motion) with a constant rate $ω.$ We show that the coarse-grained dynamics of the system can be mapped to a beads-in-urn model called misanthrope process where particles are identified as urns and vacancies as beads that hop to a neighbouring urn situated in the direction opposite to the current. The hop rate, same as the magnitude of the current, depends on the total number of beads present in the departure and the arrival urn; we calculate it analytically and show that it does not satisfy the criteria required for a phase separation transition. Tumbling is generally detrimental to the stability of jamming; thus, our results for this restricted tumbling model strongly suggest that motility induced phase separation transition can not occur in one dimension.