论文标题
几乎收敛序列的空间有多大?
How large is the space of almost convergent sequences?
论文作者
论文摘要
我们考虑子空间$ c $,$ \ wideHat {c} $,$ s $ s $ of $ \ ell^\ infty $,其中$ \ wideHat {c} $几乎是融合的序列,$ s $由序列组成,序列的序列是其连续项的算法。我们知道$ c \ subset \ wideHat {c} \ subset s $。我们检查了$ \ widehat {c} $,$ \ wideHat {c} $ in $ s $中的$ c $和$ s $ in $ \ ell^\ infty $中的$ s $。我们将从孔隙率,代数性和度量的角度来做。
We consider the subspaces $c$, $\widehat{c}$, $S$ of $\ell^\infty$, where $\widehat{c}$ consists of almost convergent sequences, and $S$ consists of sequences whose arithmetic means of consecutive terms are convergent. We know that $c\subset \widehat{c} \subset S$. We examine the largeness of $c$ in $\widehat{c}$, $\widehat{c}$ in $S$ and $S$ in $\ell^\infty$. We will do it from the viewpoints of porosity, algebrability and measure.