论文标题
自发性分数约瑟夫森(Josephson)
Spontaneous fractional Josephson current from parafermions
论文作者
论文摘要
我们研究了一个副象征约瑟夫森连接(JJ),其中包括两个量子大厅(QH)系统的一对反传输边缘模式,该模式靠近S-WAVE超导体。我们表明,约瑟夫森交界处的两个反传播手性边缘的长度(可以由外部门控制)之间的差异可以充当自发相位偏差的来源。对于Laughlin填充分数,$ν= 1/m,〜m \ in 2 \ mathbb {z}+1 $,这会导致对Majorana $(M = 1)$或Parafermion $(M \ neq 1)$零模式的电气控制。
We study a parafermion Josephson junction (JJ) comprising a pair of counter-propagating edge modes of two quantum Hall (QH) systems, proximitized by an s-wave superconductor. We show that the difference between the lengths (which can be controlled by external gates) of the two counter-propagating chiral edges at the Josephson junction, can act as a source of spontaneous phase bias. For the Laughlin filling fractions, $ν= 1/m,~ m \in 2\mathbb{Z}+1$, this leads to an electrical control of either Majorana $(m=1)$ or parafermion $(m\neq 1)$ zero modes.