论文标题
在非平衡过渡中解决熵的贡献
Resolving entropy contributions in nonequilibrium transitions
论文作者
论文摘要
我们得出了由任何微观自由度贡献的熵的功能,这是由于它们的可测量对相关性而产生的。该功能都适用于均衡,都可以产生系统可以给出一定的相关函数的最大熵。当应用于不同的相关性时,该方法使我们能够识别管理某个物理状态的自由度,从而捕获和表征动态过渡。形式主义还适用于其转化不变性被外部力量损坏且颗粒数量可能有所不同的系统。我们将其应用于堵塞的bidisperse乳液的实验结果中,从而捕获了从晶体到无序超均匀结构的这种非平衡系统的交叉,这是混合物组成的函数。我们发现,乳液中的位置和大小之间的互相关在无序的超均匀状态的形成中起着核心作用。我们讨论了该方法对熵估计的含义,以表征无序系统中的过渡。
We derive a functional for the entropy contributed by any microscopic degrees of freedom as arising from their measurable pair correlations. Applicable both in and out of equilibrium, this functional yields the maximum entropy which a system can have given a certain correlation function. When applied to different correlations, the method allows us to identify the degrees of freedom governing a certain physical regime, thus capturing and characterizing dynamic transitions. The formalism applies also to systems whose translational invariance is broken by external forces and whose number of particles may vary. We apply it to experimental results for jammed bidisperse emulsions, capturing the crossover of this nonequilibrium system from crystalline to disordered hyperuniform structures as a function of mixture composition. We discover that the cross-correlations between the positions and sizes of droplets in the emulsion play the central role in the formation of the disordered hyperuniform states. We discuss implications of the approach for entropy estimation out of equilibrium and for characterizing transitions in disordered systems.