论文标题

从全息图的异常动量扩散的有效理论

An Effective Theory Of Anomalous Momentum Diffusion From Holography

论文作者

Ghosh, Jewel K., Momen, M. Arshad

论文摘要

我们认为$ U(1)$ MAXWELL-CHERN-SIMONS理论是$ 5 $ dimensions,并分析围绕经典带电的黑人背景的向量扰动。我们在导数扩展中求解这些扰动的运动方程。通过计算边界电流,我们发现时间和空间衍生物可以分别解释为诱导的电场和磁场,Chern-Simons项有助于边界电流的非零差异,表明量子异常。使用全息图,我们为矢量扰动构建了两衍生的有效作用。通过使径向坐标复合并使用适当的转换,我们在复杂的大体轮廓上构造了完整的解决方案。通过计算完整的Schwinger-Keldysh几何形状的壳动作,我们获得了Keldysh功能。我们发现,单个边界在壳上的作用混合了奇偶校验,而Keldysh功能不取决于Chern-Simons的术语,直到衍生物扩张中的二次阶。

We consider a $U(1)$ Maxwell-Chern-Simons theory in $5$-dimensions, and analyze the vector perturbations around a classical charged black-brane background. We solve the equations of motion for these perturbations in a derivative expansion. By computing the boundary current, we find that time and spatial derivatives can be interpreted as the induced electric and magnetic field respectively, and the Chern-Simons term contributes to a nonzero divergence of the boundary current which indicates a quantum anomaly. Using holography, we construct a two-derivative effective action for the vector perturbations. By complexifying the radial coordinate, and using appropriate transformation, we construct the full solution on the complexified bulk contour. By computing the on-shell action for the full Schwinger-Keldysh geometry, we obtain the Keldysh functional. We find that the single boundary on-shell action mixes parity, whereas the Keldysh functional does not depend on the Chern-Simons term up to the quadratic orders in derivative expansion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源