论文标题

babynet:一个针对婴儿的轻量级网络,在不受约束的环境中获得行动识别,以支持未来的儿科康复应用

BabyNet: A Lightweight Network for Infant Reaching Action Recognition in Unconstrained Environments to Support Future Pediatric Rehabilitation Applications

论文作者

Dechemi, Amel, Bhakri, Vikarn, Sahin, Ipsita, Modi, Arjun, Mestas, Julya, Peiris, Pamodya, Barrundia, Dannya Enriquez, Kokkoni, Elena, Karydis, Konstantinos

论文摘要

Action recognition is an important component to improve autonomy of physical rehabilitation devices, such as wearable robotic exoskeletons. Existing human action recognition algorithms focus on adult applications rather than pediatric ones.在本文中,我们介绍了BabyNet,BabyNet是一种轻重量(就可训练的参数而言)的网络结构,以识别婴儿从外体固定摄像机中采取行动的婴儿。我们开发了一个带注释的数据集,其中包括在不受约束的环境中的不同婴儿(例如,在家庭设置等)中,在不同婴儿的坐姿中执行的各种范围。我们的方法使用带注释的边界框的空间和时间连接来解释和抵消到达的开始,并检测一项完整的到达动作。我们评估了我们提出的方法的效率,并将其性能与其他基于基于学习的网络结构进行比较,以捕获时间相互依存的能力以及触及发作和偏移的检测准确性。结果表明,我们的宝贝网络可以从超过其他较大网络的(平均)测试准确性方面实现稳定的性能,因此可以作为基于视频的婴儿达到动作识别的轻量重量数据驱动框架。

Action recognition is an important component to improve autonomy of physical rehabilitation devices, such as wearable robotic exoskeletons. Existing human action recognition algorithms focus on adult applications rather than pediatric ones. In this paper, we introduce BabyNet, a light-weight (in terms of trainable parameters) network structure to recognize infant reaching action from off-body stationary cameras. We develop an annotated dataset that includes diverse reaches performed while in a sitting posture by different infants in unconstrained environments (e.g., in home settings, etc.). Our approach uses the spatial and temporal connection of annotated bounding boxes to interpret onset and offset of reaching, and to detect a complete reaching action. We evaluate the efficiency of our proposed approach and compare its performance against other learning-based network structures in terms of capability of capturing temporal inter-dependencies and accuracy of detection of reaching onset and offset. Results indicate our BabyNet can attain solid performance in terms of (average) testing accuracy that exceeds that of other larger networks, and can hence serve as a light-weight data-driven framework for video-based infant reaching action recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源