论文标题
表示旅行时间预测的罕见时间条件的表示
Representation learning of rare temporal conditions for travel time prediction
论文作者
论文摘要
预测罕见的时间条件下的旅行时间(例如,公共假期,学校假期等)构成了挑战,这是由于历史数据的限制而构成的。如果所有可用的话,历史数据通常会形成异质时间序列,这是由于长时间其他变化的可能性很高(例如,道路工程,引入的交通镇定计划等)。这在城市和郊区特别突出。我们提出了一个用于编码罕见时间条件的矢量空间模型,该模型允许在不同时间条件上进行连贯的表示。在使用代表时间设置的矢量空间编码时,我们显示出对不同基线的旅行时间预测的性能提高。
Predicting travel time under rare temporal conditions (e.g., public holidays, school vacation period, etc.) constitutes a challenge due to the limitation of historical data. If at all available, historical data often form a heterogeneous time series due to high probability of other changes over long periods of time (e.g., road works, introduced traffic calming initiatives, etc.). This is especially prominent in cities and suburban areas. We present a vector-space model for encoding rare temporal conditions, that allows coherent representation learning across different temporal conditions. We show increased performance for travel time prediction over different baselines when utilizing the vector-space encoding for representing the temporal setting.