论文标题

循环电流波动和量子关键运输

Loop current fluctuations and quantum critical transport

论文作者

Shi, Zhengyan Darius, Else, Dominic V., Goldman, Hart, Senthil, T.

论文摘要

我们研究与金属中环电流顺序相关的量子临界点(QCP)的电运传输,专门针对“ Hertz-Millis”类型的模型。在红外(IR)固定点,在没有障碍的情况下,最简单的模型在非零频率下具有无限的直流电导率和零不相干的电导率。但是,我们发现,涉及$ n $的玻色子和带有随机耦合在风味空间中的特定变形,承认在IR固定点处有有限的不一致,频率依赖的电导率,$σ(ω> 0)\simΩ\simΩ^{ - 2/z} $,其中$ z $是$ z $,而boson是boson Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Dynamical Exportent。利用量子异常的非扰动结构,我们开发了一种强大的运输计算方法。由此产生的“反常辅助大型$ n $扩展”使我们能够系统地提取电导率。尽管我们的结果表明,这种随机味道模型是对物理$ n = 1 $系统的描述的问题,但它们有助于说明量子关键转运以及异常辅助计算方法的某些一般条件。此外,我们重新审视了一个旧结果,即无关的操作员会在此类问题中生成频率依赖的电导率,即$σ(ω> 0)\ simω^{ - 2(z-2)/z} $。我们明确显示在原始计算的范围内,此结果不适合任何订单参数。

We study electrical transport at quantum critical points (QCPs) associated with loop current ordering in a metal, focusing specifically on models of the "Hertz-Millis" type. At the infrared (IR) fixed point and in the absence of disorder, the simplest such models have infinite DC conductivity and zero incoherent conductivity at nonzero frequencies. However, we find that a particular deformation, involving $N$ species of bosons and fermions with random couplings in flavor space, admits a finite incoherent, frequency-dependent conductivity at the IR fixed point, $σ(ω>0)\simω^{-2/z}$, where $z$ is the boson dynamical exponent. Leveraging the non-perturbative structure of quantum anomalies, we develop a powerful calculational method for transport. The resulting "anomaly-assisted large $N$ expansion" allows us to extract the conductivity systematically. Although our results imply that such random-flavor models are problematic as a description of the physical $N = 1$ system, they serve to illustrate some general conditions for quantum critical transport as well as the anomaly-assisted calculational methods. In addition, we revisit an old result that irrelevant operators generate a frequency-dependent conductivity, $σ(ω>0) \sim ω^{-2(z-2)/z}$, in problems of this kind. We show explicitly, within the scope of the original calculation, that this result does not hold for any order parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源