论文标题

部分temperley-lieb代数及其表示形式

The partial Temperley-Lieb algebra and its representations

论文作者

Doty, Stephen, Giaquinto, Anthony

论文摘要

我们给出一个新图代数的组合描述,部分templey- lieb代数,作为通用的中央式代数$ \ mathrm {end} _ {\ mathbf {u} _q(u} _q(\ mathfrak {\ mathfrak {gl} _2) v(1)$是量化包络代数$ \ mathbf {u} _q(\ mathfrak {gl} _2)$的量化和天然模块的直接总和。这是Benkart和Halverson的Motzkin代数($ \ Mathbf {u} _Q(\ Mathfrak {sl} _2)$ - centralizer)的适当子代数。我们证明了Schur的版本 - 新代数的二元性,并描述了他们的通用表示理论。

We give a combinatorial description of a new diagram algebra, the partial Temperley--Lieb algebra, arising as the generic centralizer algebra $\mathrm{End}_{\mathbf{U}_q(\mathfrak{gl}_2)}(V^{\otimes k})$, where $V = V(0) \oplus V(1)$ is the direct sum of the trivial and natural module for the quantized enveloping algebra $\mathbf{U}_q(\mathfrak{gl}_2)$. It is a proper subalgebra of the Motzkin algebra (the $\mathbf{U}_q(\mathfrak{sl}_2)$-centralizer) of Benkart and Halverson. We prove a version of Schur--Weyl duality for the new algebras, and describe their generic representation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源