论文标题

SIAD:自我监督图像异常检测系统

SIAD: Self-supervised Image Anomaly Detection System

论文作者

Li, Jiawei, Lan, Chenxi, Zhang, Xinyi, Jiang, Bolin, Xie, Yuqiu, Li, Naiqi, Liu, Yan, Li, Yaowei, Huo, Enze, Chen, Bin

论文摘要

AIGC的最新趋势有效地提高了视觉检查的应用。但是,大多数可用系统以人类的方式工作,无法为在线应用提供长期支持。为了向前迈出一步,本文概述了一个名为SSAA的自动注释系统,以一种自学的学习方式工作,以在制造自动化场景中不断进行在线视觉检查。 SSAA受益于自我监督的学习,有效地为整个生命周期建立了视觉检查应用程序。在早期阶段,仅使用无异常数据,采用无监督算法来处理借口任务并为以下数据生成粗制标签。然后,对监督算法进行了下游任务的培训。借助用户友好的基于Web的接口,SSAA非常方便地集成和部署两个无监督和监督算法。到目前为止,SSAA系统已用于一些现实生活中的工业应用。

Recent trends in AIGC effectively boosted the application of visual inspection. However, most of the available systems work in a human-in-the-loop manner and can not provide long-term support to the online application. To make a step forward, this paper outlines an automatic annotation system called SsaA, working in a self-supervised learning manner, for continuously making the online visual inspection in the manufacturing automation scenarios. Benefit from the self-supervised learning, SsaA is effective to establish a visual inspection application for the whole life-cycle of manufacturing. In the early stage, with only the anomaly-free data, the unsupervised algorithms are adopted to process the pretext task and generate coarse labels for the following data. Then supervised algorithms are trained for the downstream task. With user-friendly web-based interfaces, SsaA is very convenient to integrate and deploy both of the unsupervised and supervised algorithms. So far, the SsaA system has been adopted for some real-life industrial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源