论文标题
$ P $ -Navier-Stokes系统的本地不连续的Galerkin近似,第一部分:收敛分析
A Local Discontinuous Galerkin approximation for the $p$-Navier-Stokes system, Part I: Convergence analysis
论文作者
论文摘要
在本文中,我们提出了一个本地不连续的Galerkin(LDG)近似,以实现$ p $ -navier-Stokes类型的完全非均匀系统。在原始公式的基础上,我们证明了该方法的稳定性,稳定性(先验估计)和该方法的弱收敛性。为此,我们提出了对流术语的新的DG离散化,并发展了一种抽象的不合格理论,即伪单次性能,该理论适用于我们的问题。我们还使用我们的方法来治疗$ p $ - 斯托克斯问题。
In the present paper, we propose a Local Discontinuous Galerkin (LDG) approximation for fully non-homogeneous systems of $p$-Navier-Stokes type. On the basis of the primal formulation, we prove well-posedness, stability (a priori estimates), and weak convergence of the method. To this end, we propose a new DG discretization of the convective term and develop an abstract non-conforming theory of pseudo-monotonicity, which is applied to our problem. We also use our approach to treat the $p$-Stokes problem.