论文标题
单个示例中的多通道数据的生成模型 - 应用于灰尘排放
Generative Models of Multi-channel Data from a Single Example -- Application to Dust Emission
论文作者
论文摘要
宇宙微波背景中对原始$ b $ modes的追求强调了对银河尘埃前景的精制模型的需求。在这里,我们旨在从一个示例中构建多频灰尘排放的现实统计模型。我们引入了一种通用方法,该方法依赖于由小波相谐波(WPH)统计的大型家族来调节的微型典型梯度下降模型。为了解决数据的多渠道方面,我们定义了跨WPH统计数据,量化了地图之间的非高斯相关性。我们的数据驱动方法可以适用于各种情况,我们已经更新了软件pywph,因此,这项工作依赖于此。将其应用于由磁水动力学仿真构建的灰尘排放图,我们构建和评估了两个生成模型:1)a $(i,e,b)$多观察输入,2)a $ \ {i_ν\}_ν\}_ν$多频率输入。与原始地图相比,样品具有一致的特征。 1)的统计分析表明,在很大程度上捕获了功率谱,像素和Minkowski功能的分布。我们通过将合成图和原始图的光谱能分布(SED)与改良的黑体(MBB)定律拟合来分析2)。这些地图同样合适,MBB参数的比较表明,我们的模型成功地从数据中捕获了SED的空间变化。除了这项尘埃排放建模的工作的观点外,跨WPH统计数据的引入还为跨不同地图的非高斯相互作用开辟了新的途径,我们认为这对天体物理学将是富有成效的。
The quest for primordial $B$-modes in the cosmic microwave background has emphasized the need for refined models of the Galactic dust foreground. Here, we aim at building a realistic statistical model of the multi-frequency dust emission from a single example. We introduce a generic methodology relying on microcanonical gradient descent models conditioned by an extended family of wavelet phase harmonic (WPH) statistics. To tackle the multi-channel aspect of the data, we define cross-WPH statistics, quantifying non-Gaussian correlations between maps. Our data-driven methodology could apply to various contexts, and we have updated the software PyWPH, on which this work relies, accordingly. Applying this to dust emission maps built from a magnetohydrodynamics simulation, we construct and assess two generative models of: 1) a $(I, E, B)$ multi-observable input, 2) a $\{I_ν\}_ν$ multi-frequency input. The samples exhibit consistent features compared to the original maps. A statistical analysis of 1) shows that the power spectra, distributions of pixels, and Minkowski functionals are captured to a good extent. We analyze 2) by fitting the spectral energy distribution (SED) of both the synthetic and original maps with a modified blackbody (MBB) law. The maps are equally well fitted, and a comparison of the MBB parameters shows that our model succeeds in capturing the spatial variations of the SED from the data. Besides the perspectives of this work for dust emission modeling, the introduction of cross-WPH statistics opens a new avenue to characterize non-Gaussian interactions across different maps, which we believe will be fruitful for astrophysics.