论文标题

智能资源管理器:通过交互式探索识别杂乱无章的物体

Smart Explorer: Recognizing Objects in Dense Clutter via Interactive Exploration

论文作者

Wu, Zhenyu, Wang, Ziwei, Wei, Zibu, Wei, Yi, Yan, Haibin

论文摘要

识别密集混乱中的物体准确地对各种机器人操纵任务(包括抓握,包装,重新安排等)起着重要作用。但是,传统的视觉识别模型通常会因为实例之间的严重阻塞而错过对象,并且由于高对象拥挤的视觉歧义而导致不正确的预测。在本文中,我们提出了一个称为Smart Explorer的交互式探索框架,用于识别密集的杂物中的所有对象。我们的Smart Explorer会与混乱物进行物理互动,以最大程度地提高识别性能,同时最大程度地减少动作数量,在这种情况下,可以通过最佳的准确性效率折衷来有效地减轻误报和负面因素。具体而言,我们首先收集混乱的多视图RGB-D图像,然后重建相应的点云。通过跨视图汇总RGB图像的实例分割,我们获得了杂物的实例云分区,这些clutter clutter的存在和每个类别的对象数量都可以预测。生成有效物理互动的推动动作可大大减少由实例分割熵和多视图对象分歧组成的识别不确定性。因此,通过迭代实例预测和物理互动实现了对象识别在密集混乱中的最佳精度效率折衷。广泛的实验表明,我们的Smart Explorer仅通过几个动作获得了有希望的识别精度,这也比随机推动的幅度大大优于大幅度。

Recognizing objects in dense clutter accurately plays an important role to a wide variety of robotic manipulation tasks including grasping, packing, rearranging and many others. However, conventional visual recognition models usually miss objects because of the significant occlusion among instances and causes incorrect prediction due to the visual ambiguity with the high object crowdedness. In this paper, we propose an interactive exploration framework called Smart Explorer for recognizing all objects in dense clutters. Our Smart Explorer physically interacts with the clutter to maximize the recognition performance while minimize the number of motions, where the false positives and negatives can be alleviated effectively with the optimal accuracy-efficiency trade-offs. Specifically, we first collect the multi-view RGB-D images of the clutter and reconstruct the corresponding point cloud. By aggregating the instance segmentation of RGB images across views, we acquire the instance-wise point cloud partition of the clutter through which the existed classes and the number of objects for each class are predicted. The pushing actions for effective physical interaction are generated to sizably reduce the recognition uncertainty that consists of the instance segmentation entropy and multi-view object disagreement. Therefore, the optimal accuracy-efficiency trade-off of object recognition in dense clutter is achieved via iterative instance prediction and physical interaction. Extensive experiments demonstrate that our Smart Explorer acquires promising recognition accuracy with only a few actions, which also outperforms the random pushing by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源