论文标题
基于预测的混合切片框架服务水平协议保证在移动性场景中:一种深度学习方法
Prediction-based Hybrid Slicing Framework for Service Level Agreement Guarantee in Mobility Scenarios: A Deep Learning Approach
论文作者
论文摘要
网络切片是保证5G和未来网络中各种服务水平协议(SLA)的关键驱动力。无线电访问网络(RAN)中的单层无线电资源分配(IS-RRA)非常重要。但是,用户移动性为最佳IS-RRA带来了新的挑战。本文首先提出了一个柔软而坚硬的混合切片框架,其中引入了一个共同的切片以实现隔离和频谱效率之间的权衡(SE)。为了解决用户移动性提出的挑战,我们提出了一种基于两步的深度学习算法:基于基于的长期短期内存(LSTM)网络状态预测和基于深Q网络(DQN)基于基于的切片策略。在该提案中,使用LSTM网络来预测流量需求和在切片窗口级别中的每个用户的位置。此外,通过位置和无线电图映射了通道增益。然后,预测的通道增益和流量需求将输入DQN,以输出精确的切片调整。最后,实验结果证实了我们提出的切片框架的有效性:可以很好地保证切片的SLA,并且所提出的算法可以在SLA满意度,隔离度和SE方面实现近乎最佳的性能。
Network slicing is a critical driver for guaranteeing the diverse service level agreements (SLA) in 5G and future networks. Inter-slice radio resource allocation (IS-RRA) in the radio access network (RAN) is very important. However, user mobility brings new challenges for optimal IS-RRA. This paper first proposes a soft and hard hybrid slicing framework where a common slice is introduced to realize a trade-off between isolation and spectrum efficiency (SE). To address the challenges posed by user mobility, we propose a two-step deep learning-based algorithm: joint long short-term memory (LSTM)-based network state prediction and deep Q network (DQN)-based slicing strategy. In the proposal, LSTM networks are employed to predict traffic demand and the location of each user in a slicing window level. Moreover, channel gain is mapped by location and a radio map. Then, the predicted channel gain and traffic demand are input to the DQN to output the precise slicing adjustment. Finally, experiment results confirm the effectiveness of our proposed slicing framework: the slices' SLA can be guaranteed well, and the proposed algorithm can achieve near-optimal performance in terms of the SLA satisfaction ratio, isolation degree and SE.