论文标题
铜:连续的患者状态感知者
COPER: Continuous Patient State Perceiver
论文作者
论文摘要
在电子健康记录(EHR)中,自然发生的不规则时间序列(ITS)是由于患者的健康动态而自然发生的,这是由不规则的医院探访,疾病/状况以及每次访问时测量不同生命值迹象的必要性所反映的。在训练机器学习算法中,其目前的挑战是建立在相干固定固定固定固定固定固定尺寸的高度尺度的假设上。在本文中,我们提出了一种新型的连续患者状态感知器模型,称为铜,以应对其在EHR中。铜使用感知器模型和神经普通微分方程(ODE)的概念来了解患者状态的连续时间动态,即输入空间的连续性和输出空间的连续性。神经odes有助于铜生成常规的时间序列,以进食为感知器模型,该模型有能力处理多模式的大规模输入。为了评估所提出的模型的性能,我们在模仿III数据集上使用院内死亡率预测任务,并仔细设计实验来研究不规则性。将结果与证明拟议模型的功效的基准进行了比较。
In electronic health records (EHRs), irregular time-series (ITS) occur naturally due to patient health dynamics, reflected by irregular hospital visits, diseases/conditions and the necessity to measure different vitals signs at each visit etc. ITS present challenges in training machine learning algorithms which mostly are built on assumption of coherent fixed dimensional feature space. In this paper, we propose a novel COntinuous patient state PERceiver model, called COPER, to cope with ITS in EHRs. COPER uses Perceiver model and the concept of neural ordinary differential equations (ODEs) to learn the continuous time dynamics of patient state, i.e., continuity of input space and continuity of output space. The neural ODEs help COPER to generate regular time-series to feed to Perceiver model which has the capability to handle multi-modality large-scale inputs. To evaluate the performance of the proposed model, we use in-hospital mortality prediction task on MIMIC-III dataset and carefully design experiments to study irregularity. The results are compared with the baselines which prove the efficacy of the proposed model.