论文标题
人类显着驱动的补丁匹配,可解释的后虹膜识别
Human Saliency-Driven Patch-based Matching for Interpretable Post-mortem Iris Recognition
论文作者
论文摘要
法医虹膜认可,而不是活着的Iris认可,是一个新兴的研究领域,它利用Iris Biometrics的判别能力来帮助人类检查员努力识别死者。作为一种主要是人为控制的任务,作为基于机器学习的技术,法医识别是对后验证识别任务的人类专业知识的“备份”。这样,机器学习模型必须是(a)可解释的,并且(b)验尸特异性,以说明衰减眼组织的变化。在这项工作中,我们提出了一种满足要求的方法,并以人类感知的方式以一种新颖的方式接近验尸的创建。我们首先使用人类突出的图像区域的注释,是对他们的决策的重要性,首先在验尸后图像上训练一个基于学习的特征探测器。实际上,该方法直接从人类那里学习可解释的特征,而不是纯粹由数据驱动的特征学习。其次,区域虹膜代码(同样,具有人体驱动的过滤内核)用于配对检测到的虹膜斑块,这些虹膜斑块被转化为基于斑块的比较分数。通过这种方式,我们的方法为人类考官提供了可见的视觉提示,以证明身份决定和相应的置信度得分是合理的。当在从259名死者的受试者中收集的验尸虹膜图像的数据集上进行测试时,提出的三个最佳虹膜匹配器中提出的方法比商业(非人类互换)的Verieye方法表现出更好的结果。我们提出了一种独特的验尸后虹膜识别方法,该方法接受了人类显着性的培训,可以在法医检查的背景下提供完全解释的比较结果,从而实现最先进的识别效果。
Forensic iris recognition, as opposed to live iris recognition, is an emerging research area that leverages the discriminative power of iris biometrics to aid human examiners in their efforts to identify deceased persons. As a machine learning-based technique in a predominantly human-controlled task, forensic recognition serves as "back-up" to human expertise in the task of post-mortem identification. As such, the machine learning model must be (a) interpretable, and (b) post-mortem-specific, to account for changes in decaying eye tissue. In this work, we propose a method that satisfies both requirements, and that approaches the creation of a post-mortem-specific feature extractor in a novel way employing human perception. We first train a deep learning-based feature detector on post-mortem iris images, using annotations of image regions highlighted by humans as salient for their decision making. In effect, the method learns interpretable features directly from humans, rather than purely data-driven features. Second, regional iris codes (again, with human-driven filtering kernels) are used to pair detected iris patches, which are translated into pairwise, patch-based comparison scores. In this way, our method presents human examiners with human-understandable visual cues in order to justify the identification decision and corresponding confidence score. When tested on a dataset of post-mortem iris images collected from 259 deceased subjects, the proposed method places among the three best iris matchers, demonstrating better results than the commercial (non-human-interpretable) VeriEye approach. We propose a unique post-mortem iris recognition method trained with human saliency to give fully-interpretable comparison outcomes for use in the context of forensic examination, achieving state-of-the-art recognition performance.