论文标题
因子网络自动加注
Factor Network Autoregressions
论文作者
论文摘要
我们为具有复杂网络结构的时间序列提出了一个因子网络自回旋(FNAR)模型。该模型的系数反映了经济代理(“多层网络”)之间许多不同类型的连接,这些连接通过基于新型的基于张量的主要组件方法将其汇总为较小数量的网络矩阵(“网络因素”)。我们为估计因子,载荷和FNAR系数的估计提供一致性和渐近正态性结果,因为层,节点和时间点的数量差异为无穷大。我们的方法结合了两种不同的维度减少技术,可以应用于高维数据集。仿真结果显示了我们在有限样品中的估计器的优点。在经验应用中,我们使用FNAR根据各种国际贸易和财务联系来调查GDP增长率的越野相互依存。该模型提供了宏观经济网络效应以及GDP增长率的良好预测。
We propose a factor network autoregressive (FNAR) model for time series with complex network structures. The coefficients of the model reflect many different types of connections between economic agents ("multilayer network"), which are summarized into a smaller number of network matrices ("network factors") through a novel tensor-based principal component approach. We provide consistency and asymptotic normality results for the estimation of the factors, their loadings, and the coefficients of the FNAR, as the number of layers, nodes and time points diverges to infinity. Our approach combines two different dimension-reduction techniques and can be applied to high-dimensional datasets. Simulation results show the goodness of our estimators in finite samples. In an empirical application, we use the FNAR to investigate the cross-country interdependence of GDP growth rates based on a variety of international trade and financial linkages. The model provides a rich characterization of macroeconomic network effects as well as good forecasts of GDP growth rates.