论文标题

使用3D CT扫描的新型自动分类和COVID-19的分割

A Novel Automated Classification and Segmentation for COVID-19 using 3D CT Scans

论文作者

Wang, Shiyi, Yang, Guang

论文摘要

基于深度学习(DL)的医学图像分类和细分是诊断当前Covid-19的变异病毒的紧急研究主题。在肺的Covid-19计算机断层扫描(CT)图像中,地面玻璃浊度是需要专业诊断的最常见发现。基于这种情况,一些研究人员提出了相关的DL模型,这些模型可以在缺乏专业知识时取代诊所的专业诊断专家。但是,尽管DL方法在医学图像处理中具有惊人的性能,但有限的数据集可能是发展人类级别诊断准确性的挑战。此外,深度学习算法面临着在三个甚至多个维度上对医学图像进行分类和分割的挑战,并保持高精度率。因此,通过确保高度准确性,我们的模型可以将患者的CT图像分为三种类型:正常,肺炎和covid。随后,将两个数据集用于分割,其中一个数据集甚至只有有限的数据(20例)。我们的系统将分类模型和分割模型结合在一起,建立在RESNET50和3D U-NET算法的基础上。通过使用不同的数据集进行馈送,将根据分类结果进行感染区域的共vid图像分割。我们的模型通过3种类型的肺部病变分类达到94.52%的准确性:卷,肺炎和正常。对于将来的医疗用途,将模型嵌入医疗设施可能是一种有效的方法,可以协助或替代医生诊断,因此,在Covid-19情况下,更广泛的变异病毒问题也可以成功解决。

Medical image classification and segmentation based on deep learning (DL) are emergency research topics for diagnosing variant viruses of the current COVID-19 situation. In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis. Based on this situation, some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise. However, although DL methods have a stunning performance in medical image processing, the limited datasets can be a challenge in developing the accuracy of diagnosis at the human level. In addition, deep learning algorithms face the challenge of classifying and segmenting medical images in three or even multiple dimensions and maintaining high accuracy rates. Consequently, with a guaranteed high level of accuracy, our model can classify the patients' CT images into three types: Normal, Pneumonia and COVID. Subsequently, two datasets are used for segmentation, one of the datasets even has only a limited amount of data (20 cases). Our system combined the classification model and the segmentation model together, a fully integrated diagnostic model was built on the basis of ResNet50 and 3D U-Net algorithm. By feeding with different datasets, the COVID image segmentation of the infected area will be carried out according to classification results. Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal. For future medical use, embedding the model into the medical facilities might be an efficient way of assisting or substituting doctors with diagnoses, therefore, a broader range of the problem of variant viruses in the COVID-19 situation may also be successfully solved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源