论文标题
基于GAN-PRIOR的图像超分辨率的潜在多关系推理
Latent Multi-Relation Reasoning for GAN-Prior based Image Super-Resolution
论文作者
论文摘要
最近,在大型缩放因素下,单图像超分辨率(SR)通过将预训练的生成对抗网络(GAN)作为先验,见证了令人印象深刻的进步。但是,大多数基于GAN的SR方法都受到倒置潜在代码中的属性分解问题的约束,这直接导致发电机层中的视觉属性不匹配并进一步退化重建。此外,将馈送给发电机的随机噪声用于无条件的细节生成,这倾向于产生不忠的细节,从而损害了生成的SR图像的忠诚度。我们设计了Laren,这是一种潜在的多关系推理技术,可以通过潜在空间中的基于图的多关系推理来实现出色的大型SR。 Laren由两种创新设计组成。第一个是基于图的分离,该解开通过层次多相关推理构建了较高的分离潜在空间。第二个是基于图形的代码生成,该代码生成通过递归关系推理逐渐产生特定于图像的代码,这使先前的gans能够生成理想的图像详细信息。广泛的实验表明,Laren可以达到上优质的大比例图像SR,并且在多个基准测试中始终如一地超过最先进的方法。
Recently, single image super-resolution (SR) under large scaling factors has witnessed impressive progress by introducing pre-trained generative adversarial networks (GANs) as priors. However, most GAN-Priors based SR methods are constrained by an attribute disentanglement problem in inverted latent codes which directly leads to mismatches of visual attributes in the generator layers and further degraded reconstruction. In addition, stochastic noises fed to the generator are employed for unconditional detail generation, which tends to produce unfaithful details that compromise the fidelity of the generated SR image. We design LAREN, a LAtent multi-Relation rEasoNing technique that achieves superb large-factor SR through graph-based multi-relation reasoning in latent space. LAREN consists of two innovative designs. The first is graph-based disentanglement that constructs a superior disentangled latent space via hierarchical multi-relation reasoning. The second is graph-based code generation that produces image-specific codes progressively via recursive relation reasoning which enables prior GANs to generate desirable image details. Extensive experiments show that LAREN achieves superior large-factor image SR and outperforms the state-of-the-art consistently across multiple benchmarks.