论文标题
分散的风险感知多个目标的跟踪
Decentralized Risk-Aware Tracking of Multiple Targets
论文作者
论文摘要
我们考虑一个设置机器人团队的任务是通过以下属性跟踪多个目标:实现目标可以实现更准确的目标位置估计,同时也增加了传感器故障的风险。因此,必须解决跟踪质量最大化和风险最小化之间的权衡。在我们以前的工作中,开发了一个集中式控制器来计划所有机器人的动作 - 但是,这不是可扩展的方法。在这里,我们提出了一个分散且具有风险的多目标跟踪框架,在该框架中,每个机器人都计划其运动交易的跟踪准确性最大化和厌恶风险,同时仅依靠与邻居交换的自己的信息和信息。我们使用控制屏障函数来确保整个跟踪过程中的网络连接。广泛的数值实验表明,我们的系统可以达到与集中式同行相似的跟踪准确性和风险意识。
We consider the setting where a team of robots is tasked with tracking multiple targets with the following property: approaching the targets enables more accurate target position estimation, but also increases the risk of sensor failures. Therefore, it is essential to address the trade-off between tracking quality maximization and risk minimization. In our previous work, a centralized controller is developed to plan motions for all the robots -- however, this is not a scalable approach. Here, we present a decentralized and risk-aware multi-target tracking framework, in which each robot plans its motion trading off tracking accuracy maximization and aversion to risk, while only relying on its own information and information exchanged with its neighbors. We use the control barrier function to guarantee network connectivity throughout the tracking process. Extensive numerical experiments demonstrate that our system can achieve similar tracking accuracy and risk-awareness to its centralized counterpart.