论文标题

标准化和集中数据集以实现对农业深度学习模型的有效培训

Standardizing and Centralizing Datasets to Enable Efficient Training of Agricultural Deep Learning Models

论文作者

Joshi, Amogh, Guevara, Dario, Earles, Mason

论文摘要

近年来,深度学习模型已成为农业计算机视觉的标准。这种模型通常使用最初适合更通用的非农业数据集的模型权重对农业任务进行微调。缺乏特定农业的微调可能会增加培训时间和资源的使用,并降低模型性能,从而导致数据效率的总体下降。为了克服这一限制,我们为三个不同的任务收集了广泛的现有公共数据集,标准化它们,并构建标准培训和评估管道,为我们提供了一组基准测试和预处理的模型。然后,我们使用经常在深度学习任务中使用的方法进行了许多实验,但未在其特定领域的农业应用中探索。我们的实验指导我们开发多种方法,以提高培训农业深度学习模型,而没有对现有管道进行大规模修改。我们的结果表明,即使是使用农业预验证的模型权重,或将特定的空间增强量用于数据处理管道,也可以显着提高模型性能并导致趋同的融合时间,从而节省了训练资源。此外,我们发现,即使是在低质量注释上训练的模型也可以产生与高质量等效物相当水平的水平,这表明注释较差的数据集仍然可以用于培训,扩大当前可用数据集的池。我们的方法在整个农业深度学习过程中广泛适用,并具有重大数据效率提高的高潜力。

In recent years, deep learning models have become the standard for agricultural computer vision. Such models are typically fine-tuned to agricultural tasks using model weights that were originally fit to more general, non-agricultural datasets. This lack of agriculture-specific fine-tuning potentially increases training time and resource use, and decreases model performance, leading an overall decrease in data efficiency. To overcome this limitation, we collect a wide range of existing public datasets for three distinct tasks, standardize them, and construct standard training and evaluation pipelines, providing us with a set of benchmarks and pretrained models. We then conduct a number of experiments using methods which are commonly used in deep learning tasks, but unexplored in their domain-specific applications for agriculture. Our experiments guide us in developing a number of approaches to improve data efficiency when training agricultural deep learning models, without large-scale modifications to existing pipelines. Our results demonstrate that even slight training modifications, such as using agricultural pretrained model weights, or adopting specific spatial augmentations into data processing pipelines, can significantly boost model performance and result in shorter convergence time, saving training resources. Furthermore, we find that even models trained on low-quality annotations can produce comparable levels of performance to their high-quality equivalents, suggesting that datasets with poor annotations can still be used for training, expanding the pool of currently available datasets. Our methods are broadly applicable throughout agricultural deep learning, and present high potential for significant data efficiency improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源