论文标题

类型 - (i,ii)使用Ramanujan的主定理插值和一些渐近扩展

Type-(I,II) Interpolations and some asymptotic expansions using Ramanujan's master theorem

论文作者

Atale, Omprakash

论文摘要

Mellin Transform的理论是评估Zeta功能的一些已知结果的非常有用的工具。 Ramanujan在他的季度报告中\ cite {1}给出了Mellin Transform的定理,该定理现在被称为Ramanujan的主定理\ Cite {2}。在本文中,我们根据我们以前的结果\ cite {3}得出了Ramanujan的主定理的一些扩展版本,并将它们应用于某些特殊功能,例如Riesz函数$ r(z)$和广义二项式函数。也得出了一些使用扩展Ramanujan的主定理的渐近扩展。

The theory of Mellin transform is an incredibly useful tool in evaluating some of the well known results for the zeta function. Ramanujan in his quarterly reports \cite{1} gave a theorem for Mellin transform which is now known as Ramanujan's master theorem \cite{2}. In this paper, we have derived some extended versions of Ramanujan's master theorem based on our previous results \cite{3} and applied them to some special functions such as known as the Riesz function $R(z)$ and generalized binomial function. Some asymptotic expansions using extended Ramanujan's master theorem are also derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源