论文标题
对冠状X射线光谱辐照度的每日变化进行建模,并使用两个温度和两个排放度量
Modeling the Daily Variations of the Coronal X-ray Spectral Irradiance with Two Temperatures and Two Emission Measures
论文作者
论文摘要
微型X射线太阳能光谱仪(MINXSS-1)立方体观察到的太阳X射线在0.5至10 KEV之间。每个每日平均光谱均适合两个温度的两发射测量模型。这些每日平均温度和排放措施与相应的每日太阳能10.7 cm无线电通量(F10.7)值绘制,并且在我们称为Schwab Woods Mason(SWM)模型的每种情况下都发现了线性相关。线性趋势表明,仅基于F10.7的测量,就可以估算0.5 KEV和10 KEV之间的太阳光谱。该模型的凉爽温度成分代表静止的太阳对光谱的贡献,本质上与太阳能活动无关,这意味着每日平均静止的太阳被单个温度(1.70 mk)精确地描述,而不论太阳强度如何,并且仅适用于此温度的发射度量才能调整以较高或较低的溶液强度。显示温度较高的温度成分表示对光谱的主动区域贡献,并且在5 mk至6 mk之间变化。使用1-8埃斯特罗姆之间的XRS-B数据用于验证该模型,发现SWM模型辐照度与GON XRS-B辐照度之间的比率平均接近统一。静止太阳条件期间的MINXSS-1光谱的计数非常低,超过3 keV。 SWM模型可以在非常高的光谱分辨率下生成MINXSS-1或DAXSSSS光谱,并且具有扩展的能量范围,以填补测量之间的空白,并将预测扩展到1947年。
The Miniature X-ray Solar Spectrometer (MinXSS-1) CubeSat observed solar X-rays between 0.5 and 10 keV. A two-temperature, two-emission measure model is fit to each daily averaged spectrum. These daily average temperatures and emission measures are plotted against the corresponding daily solar 10.7 cm radio flux (F10.7) value and a linear correlation is found between each that we call the Schwab Woods Mason (SWM) model. The linear trends show that one can estimate the solar spectrum between 0.5 keV and 10 keV based on the F10.7 measurement alone. The cooler temperature component of this model represents the quiescent sun contribution to the spectra and is essentially independent of solar activity, meaning the daily average quiescent sun is accurately described by a single temperature (1.70 MK) regardless of solar intensity and only the emission measure corresponding to this temperature needs to be adjusted for higher or lower solar intensity. The warmer temperature component is shown to represent active region contributions to the spectra and varies between 5 MK to 6 MK. GOES XRS-B data between 1-8 Angstroms is used to validate this model and it is found that the ratio between the SWM model irradiance and the GOES XRS-B irradiance is close to unity on average. MinXSS-1 spectra during quiescent solar conditions have very low counts beyond around 3 keV. The SWM model can generate MinXSS-1 or DAXSS spectra at very high spectral resolution and with extended energy ranges to fill in gaps between measurements and extend predictions back to 1947.