论文标题

通过财务应用对连续时间随机过程进行量子编码和分析

Quantum Encoding and Analysis on Continuous Time Stochastic Process with Financial Applications

论文作者

Zhuang, Xi-Ning, Chen, Zhao-Yun, Xue, Cheng, Wu, Yu-Chun, Guo, Guo-Ping

论文摘要

连续的时间随机过程是一种主流数学仪器,通过涉及金融,统计,物理和时间序列分析的广泛应用来建模随机世界,而对连续时间随机过程的仿真和分析是古典计算机的挑战性问题。在这项工作中,建立了一个通用框架,以便在量子计算机中有效地准备连续时间随机过程的路径。存储和计算资源在保持时间的关键参数上呈指数减少,因为量子数和电路深度均通过我们的压缩状态准备方法进行了优化。所需的信息,包括对财务问题必不可少的路径依赖和历史敏感的信息,可以从压缩抽样路径中有效提取,并承认进一步的二次加速。此外,这种提取方法对那些不连续的跳跃捕捉极端市场事件更敏感。在集体风险模型中给出了默顿跳跃扩散模型和破坏概率计算中期权定价的两个应用。

The continuous time stochastic process is a mainstream mathematical instrument modeling the random world with a wide range of applications involving finance, statistics, physics, and time series analysis, while the simulation and analysis of the continuous time stochastic process is a challenging problem for classical computers. In this work, a general framework is established to prepare the path of a continuous time stochastic process in a quantum computer efficiently. The storage and computation resource is exponentially reduced on the key parameter of holding time, as the qubit number and the circuit depth are both optimized via our compressed state preparation method. The desired information, including the path-dependent and history-sensitive information that is essential for financial problems, can be extracted efficiently from the compressed sampling path, and admits a further quadratic speed-up. Moreover, this extraction method is more sensitive to those discontinuous jumps capturing extreme market events. Two applications of option pricing in Merton jump diffusion model and ruin probability computing in the collective risk model are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源